On Multipliers Preserving the Classes of Functions with a Given Major of the Modulus of Continuity

JÜri Lippus

Eesti Teaduste Akadeemia, Küberneetika Instituut, Tallinn, Estonia, USSR
Communicated by P. L. Butzer

Received May 11, 1990

A necessary and sufficient condition is obtained for (C_{ω}, C_{ω}) multipliers in the case of a slowly decreasing majorant of the modulus of continuity $\omega(\delta)$. For the Lipschitz classes this result is equivalent to a theorem of A. Zygmund (J. Math. Mech. 8 (1959), 889-895). © 1991 Academic Press, Inc.

1. Introduction

Let X and Y be two classes of 2π-periodic integrable functions. We say that a two-way infinite sequence of complex numbers $\lambda=\left\{\lambda_{k}\right\}_{k=-\infty}^{\infty}$ is a multiplier from X into Y, and we write $\lambda \in(X, Y)$, if whenever

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} \tag{1}
\end{equation*}
$$

is the Fourier series of a function f in X, the series

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \lambda_{k} c_{k} e^{i k x} \tag{2}
\end{equation*}
$$

is the Fourier series of a function f_{λ} in Y.
Let C denote the class of 2π-periodic continuous functions with the norm

$$
\|f\|_{C}=\max _{-\pi \leqslant x \leqslant \pi}|f(x)|
$$

and L the class of 2π-periodic integrable functions with the norm

$$
\begin{gathered}
\|f\|_{L}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| d x . \\
190
\end{gathered}
$$

$$
\left(C_{\omega}, C_{\omega}\right) \text { MULTIPLIERS }
$$

Let $\omega(\delta)$ be a given modulus of continuity and let C_{ω} denote the class of continuous functions, for the moduli of continuity of which,

$$
\omega(f, \delta)_{C}=\sup _{|h| \leqslant \delta}\|f(\cdot+h)-f(\cdot)\|_{C},
$$

we have

$$
\omega(f, \delta)_{C}=O(\omega(\delta))
$$

It is well known (see e.g. [5, p. 176]) that the sequence λ is of the type (C, C) if and only if

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} \lambda_{k} e^{i k x} \tag{3}
\end{equation*}
$$

is a Fourier-Stieltjes series. For the type $\left(C_{\omega}, C_{\omega}\right)$ this condition is sufficient but no longer necessary.

In 1959 A . Zygmund [4] proved that if $\omega(\delta)=\delta^{\alpha}$ with $0<\alpha<1$, then $\hat{\lambda} \in\left(C_{\omega}, C_{\omega}\right)$ if and only if the indefinite integral of the series (3),

$$
\begin{equation*}
\mathscr{L}(x)=\sum_{k \neq 0}(i k)^{-1} \lambda_{k} e^{i k x} \tag{4}
\end{equation*}
$$

belongs to the Zygmund class in integral metrics L_{*}, i.e., $\omega_{2}(\mathscr{L}, \delta)_{L}=$ $\sup _{|h| \leqslant \delta}\|\mathscr{L}(\cdot+2 h)+\mathscr{L}(\cdot)-2 \mathscr{L}(\cdot+h)\|_{L}=O(\delta)$.

In [1] it is shown that this theorem is valid for a wider class of moduli of continuity, namely for those satisfying the condition

$$
\begin{equation*}
\int_{0}^{\delta} \frac{\omega(t)}{t} d t+\delta \int_{\delta}^{2 \pi} \frac{\omega(t)}{t^{2}} d t=O(\omega(\delta)) \tag{5}
\end{equation*}
$$

(See also [2].) More precisely
Theorem A. A necessary condition for λ to be of the type $\left(C_{\omega}, C_{\omega}\right)$ is that \mathscr{L} should belong to L_{*}. If the modulus of continuity $\omega(\delta)$ is such that (5) holds, then this condition is also sufficient.

In the present paper, we shall find a necessary and sufficient condition for λ to be of the type (C_{ω}, C_{ω}) with $\omega(\delta)$ slowly decreasing. We shall also show that if $\omega(\delta)$ satisfies (5) then this condition is equivalent to Theorem A.

2. Preliminaries

Let $E_{n}(f)_{L}$ denote the best approximation of the function f with trigonometric polynomials of a degree not exceeding n in integral metrics. Let $v_{n} f$ denote the $n, 2 n$ de la Valleé Poussin means of the Fourier series of $f\left(s_{n} f\right.$ is the nth symmetrical partial sum of (1))

$$
v_{n} f=\left(\frac{1}{n}\right)\left(s_{n} f+s_{n+1} f \cdots+s_{2 n-1} f\right)
$$

and let $v_{n}(x)$ be the corresponding kernel

$$
v_{n}(x)=2 K_{2 n-1}(x)-K_{n-1}(x),
$$

where

$$
K_{n}(x)=\sum_{k=-n}^{n}(1-|k| / n) e^{i k x}
$$

is the Fejer kernel. By $f * g$ we denote the convolution

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t) g(t) d t
$$

For any complex number z define the function $\overline{\operatorname{sign}} z=\bar{z} / z$ for $z \neq 0$, $\overline{\operatorname{sign}} z=0$ if $z=0$. By $v_{n} \Lambda$ we denote the de la Valleé Poussin means of the series (3).

Proposition 1. A necessary and sufficient condition for \mathscr{L} to belong to the Zygmund class L_{*} is that for arbitrary $m, n \rightarrow \infty, m>n, m / n=O(1)$, we should have

$$
\begin{equation*}
\left\|v_{m} \Lambda-v_{n} \Lambda\right\|_{L}=O(1) \tag{6}
\end{equation*}
$$

Proof. Suppose $\mathscr{L} \in L_{*}$. That implies $E_{n}(\mathscr{L})_{L}=O(1 / n)$. Considering Bernstein's inequality and the properties of the de la Valleé Poussin means we get

$$
\begin{aligned}
\left\|v_{m} \Lambda-v_{n} \Lambda\right\|_{L} & \leqslant 2 m\left\|v_{m} \mathscr{L}-v_{n} \mathscr{L}\right\|_{L} \\
& \leqslant 2 m\left(\left\|v_{n} \mathscr{L}-\mathscr{L}\right\|_{L}+\left\|\mathscr{L}-v_{n} \mathscr{L}\right\|_{L}\right) \\
& \leqslant 8 m\left(E_{m}(\mathscr{L})_{L}+E_{n}(\mathscr{L})_{L}\right)=O(m(1 / m+1 / n)) \\
& =O(1+m / n)
\end{aligned}
$$

As we have supposed $m / n=O(1)$ this proves the necessity of (6). To prove sufficiency suppose that (6) holds. Then using Jackson's theorem we obtain the estimate

$$
\begin{align*}
\left\|v_{m} \mathscr{L}-v_{n} \mathscr{L}\right\|_{L} & \leqslant 4 E_{n}\left(v_{m} \mathscr{L}\right)_{L} \leqslant(4 / n) E_{n}\left(v_{m} A\right)_{L} \\
& \leqslant(4 / n)\left\|v_{m} A-v_{[n / 2]} A\right\|_{L}=O(1 / n) . \tag{7}
\end{align*}
$$

To estimate $E_{n}(\mathscr{L})_{L}$ consider the decomposition

$$
\begin{aligned}
\left\|\mathscr{L}-v_{n} \mathscr{L}\right\|_{L} & =\left\|\sum_{k=0}^{\infty}\left\{v_{2^{k+1_{n}}} \mathscr{L}-v_{2^{k} n}^{\prime} \mathscr{L}\right\}\right\|_{L} \\
& \leqslant \sum_{k=0}^{\infty}\left\|v_{2^{k+1}} \mathscr{L}-v_{2^{k}{ }_{n}} \mathscr{L}\right\|_{L} .
\end{aligned}
$$

In view of (7) this leads to

$$
\left\|\mathscr{L}-v_{n} \mathscr{L}\right\|_{L} \leqslant \sum_{k=0}^{\infty} O\left(\frac{1}{2^{k} n}\right)=O(1 / n)
$$

which in its turn yields $E_{n}(\mathscr{L})_{L}=O(1 / n)$, i.e., $\mathscr{L} \in L_{*}$. This concludes the proof of the proposition.

3. Main Theorem

Let $\omega(\delta)$ be a modulus of continuity. Consider the sequence $\Delta(\omega)=$ $\left\{\delta_{k}\right\}_{k=0}^{\infty}$, defined by induction $(k \geqslant 0)$,

$$
\begin{align*}
\delta_{0} & =2 \pi \\
\delta_{k+1} & =\min \left\{\delta: \max \left(\frac{\omega(\delta)}{\omega\left(\delta_{k}\right)}, \frac{\delta \omega\left(\delta_{k}\right)}{\delta_{k} \omega(\delta)}\right)=\frac{1}{2}\right\} . \tag{8}
\end{align*}
$$

The sequence $\Delta(\omega)$ has among others the following properties (see [3]):

1. $(1 / c) \omega(\delta) \leqslant \sum_{k=0}^{\infty} \omega\left(\delta_{k}\right) \min \left(1, \delta / \delta_{k}\right) \leqslant c \omega(\delta)$;
2. $\delta_{k} / \delta_{k+1}=O(1)(k \rightarrow \infty) \quad$ if and only if $\omega(\delta)$ satisfies the condition (5).

Theorem 1. Let $\omega(\delta)$ be a slowly decreasing modulus of continuity, i.e., $\omega(\delta) / \sqrt{\delta} \uparrow \infty \quad(\delta \rightarrow 0+)$. Let $\Delta(\omega)=\left\{\delta_{k}\right\}$ be defined by (8) and let
$n_{k}=\left[1 / \delta_{k}\right]$. Then a necessary and sufficient condition for $\lambda=\left\{\lambda_{k}\right\}$ to be of the type $\left(C_{\omega}, C_{\omega}\right)$ is

$$
\begin{equation*}
\left\|v_{n_{k+1}} \Lambda-v_{n_{k}} \Lambda\right\|_{L}=O(1) \tag{11}
\end{equation*}
$$

Proof. Sufficiency. Let $f \in C_{\omega}$ and suppose (11) holds. Consider the series ($m_{k}=\left[n_{k} / 2\right]$)

$$
\begin{align*}
\sum_{k=0}^{\infty} & \left(v_{n_{k+1}} f_{\lambda}-v_{n_{k}} f_{\lambda}\right) \\
& =\sum_{k=0}^{\infty}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right) *\left(v_{n_{k+1}} A-v_{n_{k}} A\right) \tag{12}
\end{align*}
$$

Since $\left\|v_{2 n_{k+1}} f-v_{m_{k}} f\right\|_{C}=O\left(\omega\left(1 / m_{k}\right)\right)=O\left(\omega\left(1 / n_{k}\right)\right)$ we see that by (11) and (8) the series (12) converges uniformly and thus defines a continuous function f_{λ}. Let us estimate the modulus of continuity of f_{λ}. We have for $0<h<\delta$

$$
\begin{aligned}
\| f_{\lambda}(x & +h)-f_{\lambda}(x)\left\|_{C}=\right\| \Delta_{h} f_{\lambda} \|_{C} \\
& =\left\|\sum_{k=0}^{\infty} \Delta_{h}\left\{v_{n_{k+1}} f_{\lambda}-v_{n_{k}} f_{\lambda}\right\}\right\|_{C} \\
& =\left\|\sum_{k=0}^{\infty}\left\{\Delta_{h} f\right\} *\left\{v_{n_{k+1}} \Lambda-v_{n_{k}} A\right\}\right\|_{C} \\
& =\left\|\sum_{k=0}^{\infty}\left\{\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)\right\} *\left\{v_{n_{k+1}} A-v_{n_{k}} \Lambda\right\}\right\|_{C} \\
& \leqslant \sum_{k=0}^{\infty}\left\|\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)\right\|_{C}\left\|v_{n_{k+1}} A-v_{n_{k}} A\right\|_{L} .
\end{aligned}
$$

Let us examine the norm of the difference $\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)$. On the one hand we have by Jackson's theorem

$$
\begin{align*}
& \left\|\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)\right\|_{C} \leqslant 2\left\|v_{2 n_{k+1}} f-v_{m_{k}} f\right\|_{C} \\
& \quad=O\left(E_{m_{k}}(f)_{C}\right)=O\left(\omega\left(1 / m_{k}\right)\right)=O\left(\omega\left(\delta_{k}\right)\right) \tag{13}
\end{align*}
$$

On the other hand, applying Bernstein's inequality we obtain

$$
\begin{aligned}
\left\|\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)\right\|_{C} & =O\left(n_{k+1} h\left\|v_{2 n_{k+1}} f-v_{m_{k}} f\right\|_{C}\right) \\
& =O\left(\delta n_{k+1} \omega\left(\delta_{k}\right)\right)
\end{aligned}
$$

$$
\left(C_{\omega}, C_{\omega}\right) \text { MULTIPLIERS }
$$

As $\omega(\delta)$ is slowly decreasing, in view of (8) we get

$$
\begin{align*}
\left\|\Delta_{h}\left(v_{2 n_{k+1}} f-v_{m_{k}} f\right)\right\|_{C} & =O\left(\omega\left(\delta_{k}\right) \delta / \delta_{k+1}\right) \\
& =O\left(\omega\left(\delta_{k+1}\right) \delta / \delta_{k+1}\right) . \tag{14}
\end{align*}
$$

Combining (13) and (14) we obtain by (9) and (11)

$$
\left\|\Delta_{h} f_{\lambda}\right\|_{C}=O\left(\sum_{k=0}^{\infty} \omega\left(\delta_{k}\right) \min \left(1, \delta / \delta_{k}\right)\right)=O(\omega(\delta))
$$

thus $f_{\lambda} \in C_{\omega}$. This proves the sufficiency part of the theorem.
Necessity. In view of Theorem A we only have to consider the case $\mathscr{L} \in L_{*}$. Suppose (11) does not hold and that $\mathscr{L} \in L_{*}$. Then there exists a sequence of indices $\{k(l)\}$ such that

$$
\begin{equation*}
\left\|v_{n_{k, l+1}+1} A-v_{n_{k|k| l \mid}} A\right\|_{L} \geqslant l . \tag{15}
\end{equation*}
$$

Let

$$
G_{k}(x)=\overline{\operatorname{sign}}\left\{v_{n_{k}+1} A(-x)-v_{n_{k}} A(-x)\right\}
$$

and

$$
\phi_{k}(x)=G_{k}(x) *\left\{v_{n_{k+1}}(x)-v_{n_{k}}(x)\right\} .
$$

The functions ϕ_{k} are trigonometric polynomials of the order $2 n_{k+1}$, orthogonal to trigonometric polynomials of an order less than n_{k}. Let

$$
f(x)=\sum_{k=1}^{\infty} \omega\left(\delta_{k}\right) \phi_{k}(x)
$$

Since $\left\|\phi_{k}\right\|_{\mathcal{C}}=O(1)$ this series, in view of (8), converges uniformly, hence $f \in C$. To estimate the modulus of continuity of f observe that by Bernstein's inequality

$$
\omega\left(\phi_{k}, \delta\right)=O\left(\min \left\{1, n_{k+1} \delta\right\}\right)=O\left(\min \left\{1, \delta / \delta_{k+1}\right\}\right)
$$

Applying (9) we see that $f \in C_{\omega}$.
Next let us prove that $f_{\lambda} \notin C_{\omega}$. If f_{λ} is to belong to C_{ω} we should have ($m_{k}=\left[n_{k} / 2\right]$)

$$
\begin{align*}
\left\|v_{2 n_{k+1}} f_{\lambda}-v_{m_{k}} f_{\lambda}\right\|_{C} & \leqslant 4\left(E_{2 n_{k+1}}(f)_{C}+E_{m_{k}}\left(f_{\lambda}\right)_{C}\right) \\
& =O\left(\omega\left(1 / n_{k}\right)\right)=O\left(\omega\left(\delta_{k}\right)\right) . \tag{16}
\end{align*}
$$

On the other hand we have chosen the polynomials ϕ_{k} so that

$$
\begin{aligned}
& v_{2 n_{k+1}} f_{\lambda}-v_{m_{k}} f_{\lambda} \\
& \quad=\left\{\omega\left(\delta_{k-1}\right) \phi_{k-1}+\omega\left(\delta_{k}\right) \phi_{k}+\omega\left(\delta_{k+1}\right) \phi_{k+1}\right\} *\left\{v_{2 n_{k+1}} \Lambda-v_{m_{k}} \Lambda\right\}
\end{aligned}
$$

Observing that all terms in the last convolution are trigonometric polynomials of specially chosen order we obtain

$$
\begin{aligned}
& v_{2 n_{k+1}} f_{\lambda}-v_{m_{k}} f_{\lambda} \\
& =\omega\left(\delta_{k}\right)\left(\phi_{k}\right)_{\lambda}+\omega\left(\delta_{k-1}\right) G_{k-1} *\left\{v_{n_{k}} \Lambda-v_{m_{k}} A\right\} \\
& \quad+\omega\left(\delta_{k+1}\right) G_{k+1} *\left\{v_{2 n_{k+1}} \Lambda-v_{n_{k+1}} \Lambda\right\} .
\end{aligned}
$$

Since $\left\|G_{k}\right\|_{C} \leqslant 1$ the application of Young's inequality gives us

$$
\begin{aligned}
& \left\|v_{2 n_{k+1}} f_{\lambda}-v_{m_{k}} f_{\lambda}\right\|_{C} \\
& \quad \geqslant \omega\left(\delta_{k}\right)\left(\phi_{k}\right)_{\lambda}(0)-\omega\left(\delta_{k-1}\right)\left\|v_{n_{k}} \Lambda-v_{m_{k}} \Lambda\right\|_{L} \\
& \quad-\omega\left(\delta_{k+1}\right)\left\|v_{2_{n_{k+1}}} \Lambda-v_{n_{k+1}} \Lambda\right\|_{L} .
\end{aligned}
$$

In view of Proposition 1 and (8) this gives us

$$
\left\|v_{2 n k+1} f_{\lambda}-v_{m_{k}} f_{\lambda}\right\|_{C} \geqslant \omega\left(\delta_{k}\right)\left(\phi_{k}\right)_{\lambda}(0)+O\left(\omega\left(\delta_{k}\right)\right) .
$$

Using the construction of ϕ_{k} we obtain by virtue of (15) $(k=k(l))$

$$
\begin{aligned}
\left(\phi_{k(l)}\right)_{\lambda}(0)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} \overline{\operatorname{sign}}\left\{v_{n_{k+1}} A(-t)-v_{n_{k}} A(-t)\right\} \\
& *\left\{v_{n_{k+1}} \Lambda(-t)-v_{n_{k}} A(-t)\right\} d t \\
= & \left\|v_{n_{k+1}} \Lambda-v_{n_{k}} A\right\|_{L} \geqslant l .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|v_{2 n_{k(l)+1}} f_{\hat{\lambda}}-v_{m_{k(l)}} f_{i}\right\|_{C} & \geqslant \omega\left(\delta_{k(l)}\right) l+O\left(\omega\left(\delta_{k(l)}\right)\right) \\
& \neq O\left(\omega\left(\delta_{k(l)}\right)\right) .
\end{aligned}
$$

which contradicts (16). This concludes the proof of the theorem.
Remark. If $\omega(\delta)$ satisfies condition (5) then in view of (10) and Proposition 1 this theorem becomes equivalent to Theorem A.

References

1. J. Lippus, On the preservation of classes of functions, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 38 (1989), 1-6.
$\left(C_{\omega}, C_{\omega}\right)$ multipliers 197
2. D. M. Oberlin, On a theorem of Privalov and a theorem of Zygmund, J. Math. Anal. Appl. 145 (1990), 145-153.
3. K. I. Oskolkov, Luzin's C-property for a conjugate function, Trudy Mat. Inst. Steklov 164 (1983), 124-135.
4. A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895.
5. A. Zygmund, "Trigonometric Series," Vol. 1, Cambridge Univ. Press, Cambridge, U.K., 1959.
