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A necessary and sufficient condition is obtained for (Cw ' Cw ) multipliers in the
case of a slowly decreasing majorant of the modulus of continuity w(c5). For the
Lipschitz classes this result is equivalent to a theorem of A. Zygmund (J. Math.
Mech. 8 (1959), 889-895). © 1991 Academic Press, Inc.

1. INTRODUCTION

Let X and Y be two classes of 2n-periodic integrable functions. We say
that a two-way infinite sequence of complex numbers A= {Ak} f:= -00 is a
multiplier from X into Y, and we write AE (X, Y), if whenever

is the Fourier series of a function f in X, the series

00

L Akckeikx
k~ -00

(1)

(2)

is the Fourier series of a function fA in Y.
Let C denote the class of 2n-periodic continuous functions with the norm

Ilfllc= max If(x)1
-1t:S;;x~n

and L the class of 2n-periodic integrable functions with the norm

1 I1f

IlfllL=2n -1f If(x)1 dx.
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Let w(6) be a given modulus of continuity and let Cw denote the class
of continuous functions, for the moduli of continuity of which,

w(j,6)c= sup Ilf(· +h)-f(·)llc,
Ihl,;;6

we have

w(j, 6)c= 0(w(6».

It is well known (see e.g. [5, p. 176]) that the sequence )~ is of the type
(C, C) if and only if

(3)

is a Fourier-Stieltjes series. For the type (Cw , Cw ) this condition is
sufficient but no longer necessary.

In 1959 A. Zygmund [4] proved that if w(6)=6~ with 0<0:< 1, then
AE (Cw , Cw ) if and only if the indefinite integral of the series (3),

2(x)= I (ik)-I )~keikX,

k;60

(4 )

belongs to the Zygmund class in integral metries L*, i.e., w2(2, bh =
sUPlhl,;;6112(· +2h)+2(·)-22(· +h)IIL=O(b).

In [1] it is shown that this theorem is valid for a wider class of moduli
of continuity, namely for those satisfying the condition

(5)

(See also [2].) More precisely

THEOREM A. A necessary condition for )~ to be of the type (Cw , Co» is
that 2 should belong to L*. If the modulus of continuity w( <5) is such that
(5) holds, then this condition is also sufficient.

In the present paper, we shall find a necessary and sufficient condition
for 2 to be of the type (Co), C w ) with w(b) slowly decreasing. We shall also
show that if w(b) satisfies (5) then this condition is equivalent to
Theorem A.
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2. PRELIMINARIES

Let En(f)L denote the best approximation of the function f with
trigonometric polynomials of a degree not exceeding n in integral metrics.
Let vJ denote the n,2n de la Vallee Poussin means of the Fourier series
of f (snf is the nth symmetrical partial sum of (1))

vnf=G) (snf +sn+d··· +S2n-lf)

and let vn(x) be the corresponding kernel

where

n

Kn(x) = L (l-lklln)e ikX

k~ -n

is the Fejer kernel. By f *g we denote the convolution

1 fIT
(f*g)(X)=2n _"f(x-t)g(t)dt.

For any complex number z define the function sign z = zlz for z i= 0,
sign z = °if z = 0. By vnA we denote the de la Vallee Poussin means of the
series (3).

PROPOSITION 1. A necessary and sufficient condition for 2? to belong to
the Zygmund class L* is that for arbitrary m, n ---+ 00, m > n, min = 0(1), we
should have

(6)

Proof Suppose 2?EL*. That implies En(2?h=O(lln). Considering
Bernstein's inequality and the properties of the de la Vallee Poussin means
we get

IlvmA - vnAIIL ~ 2m Ilvm2? - vn2?IIL

~ 2m(lIvn2? - 2?IIL + It2? - vn2?IIL)

~ 8m(Em(2?)L + En(2?)L) = O(m(l/m + lin))

= 0(1 + min).
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As we have supposed min = O(1) this proves the necessity of (6). To prove
sufficiency suppose that (6) holds. Then using Jackson's theorem we obtain
the estimate

IIvm2' - vn2'IIL ~ 4En(vm2')L ~ (4/n) En(vmAh

~ (4/n) IlvmA - vCn/2J AIIL = O(l/n). (7)

To estimate En(2')L consider the decomposition

112'-Vn 2'IIL=11 I {V2k+ln2'-V~kn2'}11
k=O I L

00

~ L Il v2k+1n2' - V2kn2'IIL'
k=O '

In view of (7) this leads to

which in its turn yields En(2'h = O(1/n), i.e., 2' E L*. This concludes the
proof of the proposition.

3. MAIN THEOREM

Let w(b) be a modulus of continuity. Consider the sequence LI (OJ) =
{od;'=o, defined by induction (k~O),

00 = 2n,

. { (W(O) OW(bk)) I}
Ok+ 1 = mm 0: max w(Od' OkW(O) = 2: . (8)

The sequence LI(w) has among others the following properties (see [3]):

00

1. (l/c)w(o)~ L w(ok)min(l,%k)~cOJ(o);
k=O

2. Ok/Ok + 1 = 0(1) (k -HX)) if and only if

w(o) satisfies the condition (5).

(9)

(10)

THEOREM 1. Let w(0) be a slowly decreasing modulus of continuity, i.e.,
w(o)/)bioo (0--+0+). Let LI(W)={Ok} be defined by (8) and let

640 166/2-6
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nk= [1/Jk J. Then a necessary and sufficient condition for A= {Ad to be of
the type (Cw , Cw ) is

(11 )

Proof Sufficiency. Let fE Cw and suppose (11) holds. Consider the
series (mk= [nk/2])

00

L: (vnk+JA. - vnkf;J
k=O

00

= L: (V2nk+J - vmJ) * (V nk +1A - vnkA). (12)
k=O

Since Ilv2nk+J - vmJllc= O(w(1/mk)) = O(w(1/nk)) we see that by (11)
and (8) the series (12) converges uniformly and thus defines a continuous
function fA.. Let us estimate the modulus of continuity of fA.. We have for
O<h<J

IlfA.(x+h)- fA.(x)llc= IIAdA.llc

= II k~O Ah{vnk+JA. - vnJA.} II c

=t~o {Ad}* {Vnk+lA-vnkA} lie

= t~o {A h(V 2nk+J-vmJ)} * {vnk+lA-vnkA} lie
00

::::: L: IIAh(V2nk+J - vmJ)llc Ilv nk +1A - vnkAIIL·
k=O

Let us examine the norm of the difference Ah(V2nk+J - vmkf). On the one
hand we have by Jackson's theorem

IIAh(V2nk+J - vmJ)llc::::: 211v2nk+J - vmJl1 c

= O(Emk(f)d = O(w(1/mk)) = O(w(Jk)). (13)

On the other hand, applying Bernstein's inequality we obtain

II Ah(v2nk+J - vmJ)11 c = O(nk+ [h Ilv2nk+J - vmJlld

= O(Jnk+[w(b k))·



As w(b) is slowly decreasing, in view of (8) we get

IIJ h(V 2nk+J - vmJ)11 c= O(W(bk)b/bk+ d

= O(W(bk+ db/Jk+ I)'

Combining (13) and (14) we obtain by (9) and (11)

IIAhfJc= 0 C~O W(b k) min(l, b/bd) = O(w(b)),

thus f). E Cwo This proves the sufficiency part of the theorem.
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(14)

Necessity. In view of Theorem A we only have to consider the case
!£ E L*. Suppose (11) does not hold and that !£ E L*. Then there exists a
sequence of indices {k(l)} such that

(15)

Let

and

The functions rPk are trigonometric polynomials of the order 2nk + I'

orthogonal to trigonometric polynomials of an order less than nk' Let

CJJ

f(x) = L w(bd rPk(X),
k~1

Since IlrPkllc= 0(1) this series, in view of (8), converges uniformly, hence
f E C. To estimalte the modulus of continuity of f observe that by
Bernstein's inequality

Applying (9) we see thatfECm •

Next let us prove that f). ¢ Cm . If f). is to belong to Cm we should have
(mk= [nk/2])

Ilv 2nk+J;. - vmJJ c ~ 4(E2nk +,(f)c + Emk(f;Jd

= O(w(l/nd) = O(w(bk )). (16)
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On the other hand we have chosen the polynomials rPk so that

Observing that all terms in the last convolution are trigonometric polyno
mials of specially chosen order we obtain

=w(bd(rPd2 + w(bk_dGk- 1 * {vnkA - vmkA}

+w(bk+dGk+ 1 * {V2nk+lA-vnk+lA}.

Since II Gkll c::::; 1 the application of Young's inequality gives us

Ilv2nk+J2 - vmJ211 c

~ w(bd(rPk)2(0) - w(bk_ 1 ) IlvnkA - vmkA II L

-w(bk+ 1 ) Ilv2nk+lA-vnk+lAIIL'

In view of Proposition 1 and (8) this gives us

Ilv2nk+J2 - vmJ211 c ~ w(bk)(rPk);.(O) + O(w(bk))·

Using the construction of rPk we obtain by virtue of (15) (k=k(l))

1 fn -
(rPk(/)L.(O) = 2n -n sign{Vnk+1A( - t) - vnkA( - t)}

* {v nk +I A( - t) - vnkA( - t)} dt

= Ilvnk+1A - vnkAllL ~ I.

Thus

II V2nk(/) +J;. - vmk(lJJ c ~ W(bk(/»)I + O(W(bk(/»))

=I- O(w(15k(/»))'

which contradicts (16). This concludes the proof of the theorem.

Remark. If w(b) satisfies condition (5) then in view of (10) and
Proposition 1 this theorem becomes equivalent to Theorem A.
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